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Fast and Robust Vanishing Point Detection for
Unstructured Road Following

Jinjin Shi, Jinxiang Wang, and Fangfa Fu

Abstract—Vision-based unstructured road following is a chal-
lenging task due to the nature of the scene. This paper describes
a novel algorithm to improve the accuracy and robustness of
vanishing point estimation with very low computational cost. The
novelties of this paper are three aspects: 1) We use joint activities
of four Gabor filters and confidence measure for speeding up
the process of texture orientation estimation. 2) Misidentification
chances and computational complexity of the algorithm are re-
duced by using a particle filter. It limits vanishing point search
range and reduces the number of pixels to be voted. The algorithm
combines the peakedness measure of vote accumulator space with
the displacements of moving average of observations to regu-
late the distribution of vanishing point candidates. 3) Attributed
to the design of a noise-insensitive observation model, the proposed
system still has high detection accuracy even when less than 60
sparsely distributed vanishing point candidates are used for voting
as the influence introduced by the stochastic measurement noise of
vote function and the sparsity of the vanishing point candidates
is reduced. The method has been implemented and tested over
20 000 video frames. Experimental results demonstrate that the
algorithm achieves better performance than some state-of-the-art
texture-based vanishing point detection methods in terms of detec-
tion accuracy and speed.

Index Terms—Road following, particle filter, vanishing point
tracking, unstructured road detection.

I. INTRODUCTION

U SING computer vision techniques to develop perceptual
algorithm for autonomous ground vehicle to follow un-

structured roads is a challenging task as there are hardly any in-
variant features that can characterize the road. Over the past few
decades, numerous approaches have been developed. The focus
of much of early systems has been the algorithms of paved road
following based on specific visual characteristics of the road
surface, such as color contrasts or edges in the input image.
Lane detection on structured environments is largely considered
a “solved” problem and more recent research attempts to handle
unstructured road conditions. The difficulty in unstructured
road detection using monocular vision is that the detection algo-
rithm must be able to deal with complex real-road scenes, such
as the presence of pedestrians or vehicles on the road, different
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Fig. 1. Vanishing point in (a) straight and (b) curved roads.

road types with varieties of colors, varying illumination and
changing weather conditions etc. Furthermore, intelligent trans-
portation systems generally require fast processing since ve-
hicle speed is bounded by the processing rate [1]. A host
of researchers utilized vanishing point for road following or
as a directional constraint for defining the path boundaries.
Vanishing point is defined as the point of intersection of the
perspective projections of a set of parallel lines in 3D scene onto
the image plane. For a straight road segment [Fig. 1(a)], vanish-
ing point is obtained as the intersection point of the lines that
characterize the lane. In the case of a curved road, vanishing
point is approximated by the lane borders, markings etc. in the
vicinity of the vehicle [Fig. 1(b)]. Its distance components to the
image center yield the relative direction (yaw and pitch angles)
of the vehicle with respect to the path. Therefore, estimated
vanishing point can be utilized to steer the vehicle [2] or as a
directional constraint for drivable region segmentation [3], lane
marking detection [4] etc.

In this paper we propose a novel algorithm to reduce the
computational cost of vanishing point estimation and harden
its robustness against strong edge interference. Specifically, we
use joint activities of four Gabor filters and confidence measure
to speed up texture orientation computation. The pixels with
low confidence level are discarded and the remaining are used
for vanishing point estimation. In addition, an efficient and
effective vanishing point tracking algorithm is proposed. The
proposed system simply uses the peakedness measure of VAS
together with the displacement of moving average of vanishing
point observations to regulate the distribution of vanishing point
candidates. However, tracking the global vanishing point Vmax

of the entire image from frame to frame is unstable if only
a small number of vanishing point candidates are used for
voting because of the sparsity of the pixels to be voted and the
measurement noise introduced by the winner-take-all mecha-
nism of the vote function. To overcome this weakness, we take
the moving average of vanishing point observations to reduce
the influence. As a result, the proposed system still has high
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detection accuracy even though less than 60 vanishing point
candidates are used for voting. Thus the computational com-
plexity is greatly reduced. The method has been implemented
and tested over 20000 video frames. Qualitative and quanti-
tative analyses demonstrate that the method provides higher
accuracy and efficiency when compared with some state-of-
the-art textured-based vanishing point detection methods. We
have posted in http://www.adrive.com/public/DCX44b/video.
zip six video clips of our detection results under six different
scenarios.1

The remainder of this paper is organized as follows. We
first review some relevant works in Section II. The proposed
algorithm is then detailed in Section III. We evaluate the per-
formance of the proposed algorithm in Section IV. Finally, we
draw some conclusions in Section V.

II. RELATED WORK

Generally, a road image can be classified into a structured
or unstructured one. For structured roads (e.g., highway or
city roads), there are distinct features, such as strong color
contrasts or remarkable edges in the input image that can help
computer to detect the road by many strategies. For example,
region-based methods such as those presented by Alvarez and
Lopez [5], Alon et al. [6], and Cheng et al. [7] are often used in
urban roads to detect drivable area for autonomous vehicles.
These methods use color contrast to group pixels or super-
pixels together with similar color features to determine pixels
belong to the road area or the background. A good contrast
even aids these methods working well on unpaved rural roads.
Edge-based approaches, such as those described in [8]–[12],
typically work best on well-painted roads with high-contrast
contours suited for edge detection. In contrast, unstructured
roads (e.g., rural or desert) are not been well-paved, lack clear
lane markings or boundaries, making road detection task very
challenging. For unstructured roads, Lookingbill et al. [13]
combined self-supervised learning and optical flow techniques
to classify a drivable region for autonomous robot navigation,
but the results were not robust enough on chaotic roads. In [14],
[15], features were learned using convolutional neural network
for road scene segmentation from a single image. However,
the off-line learning needs a large amount of manually labeled
training data, which is time-consuming in practice. Huang et al.
[16] proposed a method based on HSV color space and road
features. The system ROBOG [17] utilized uniformity measure
to recognize road lanes. Although unstructured roads are not
characterized by strong edges or distinct features, they often
have texture cues parallel to the road direction in the form of
edges, border lines, or ruts and tracks left by other vehicles on
the road. These cues appear to converge into a single vanishing
point. Therefore, many vanishing point based approaches have
been proposed recently.

Texture-based method, on the other hand, utilizes texture ori-
entations computed with steerable filters to vote for the location
of road’s vanishing point. Rasmussen [18] applied 72 oriented
Gabor filter banks to achieve precise orientation estimation at

1Or available from http://pan.baidu.com/s/1sjwxDYP

each pixel. Then vanishing point was estimated by global hard-
voting. However, this scheme tends to favor points that are high
in the image, leading pixels in the upper part of the image to
receive more votes than the lower ones. To overcome this weak-
ness, Kong et al. [19] proposed an adaptive soft voting scheme
which takes into account the distance between vanishing point
candidate and voter. But in order to achieve precise orientation
estimation, they utilized 5-scale and 36-orientation Gabor filters
to convolute with the input image. Moghadam et al. [20]
suggested using single scale 4-orientation Gabor filter banks to
speed up the process of texture orientation computation. They
estimated the orientations of all of the pixels regardless with or
without apparent dominant orientations. In fact, there is not too
much difference between using 5-scale, 36-orientation Gabor
filters or just single scale, 4-orientation Gabor filters since
the post-processing algorithm of [20] is time-consuming [21].
Apart from that, we show in this paper that some improvements
still can be made (further discussed in Section III). In [22],
a novel method for vanishing point detection and tracking is
introduced by using adaptive steerable filter banks and linear
road model. The algorithm updates the filter bank so that the
preferred orientations of the filters that will be used in the next
frame are the estimated orientations of the lane markings. More
recently, Wang et al. [23] proposed a vanishing point detection
approach which needs neither magnitude threshold selection for
edge detection nor scale parameter turning for texture analysis.
Miksik et al. [24] decomposed Gabor wavelets into a linear
combination of Haar-like box filters to perform filtration in in-
tegral image domain and utilized super-pixels in voting scheme
to provide a significant speed-up at the expense of precision
loss. In [25], vanishing point is estimated by road-type-specific
voting which focuses on adjusting weights to balance out the
accumulative votes at higher area. Ebrahimpour et al. [26]
imported minimum possible information to Hough space for
fast vanishing point estimation. In [27], Wu et al. proposed an
example-based vanishing point assisted path detection method.
Vanishing point candidates were initially detected directly from
neighboring images and then refined by an iterative process.

Although the accuracy of vanishing point detection is pro-
mising based on pixel-wise voting, it is computationally expen-
sive during the voting stage because each pixel can be regarded
as both a voter and a vanishing point candidate, i.e., each
pixel of an image can vote for any pixels above it. Recently,
Kong et al. [3], [19], [28] reduced the computational amount by
incorporating confidence measure into vanishing point estima-
tion. Similarly, Miksik et al. [24] performed a morphological
dilation to include the pixels close to huge support region.
However, vanishing point detection from single image is ex-
tremely sensitive to noise. Considering the case that a road
scene exists some interference with more strong edges than the
tracks left by other vehicles, then these edges may induce an
incorrect vanishing point estimation [21] (see Fig. 2).

A large number of approaches for robust vanishing point
tracking have been proposed. For example, Moghadam et al.
[30] used Rao-Blackwellised particle filter to track the loca-
tion of the vanishing points Vmax over consecutive frames.
Suttorp et al. [29] developed a data-driven and model-based
filtering module for driver assistance systems. The robustness
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Fig. 2. Influence of strong edges in voting. V1 is the location of ground truth
vanishing point. V3, V3, and V4 are the locations of local maximum of votes.
The red arrows denote the orientations of discrete points. Since the dominant
orientations of vegetation or mountains etc. have strong points of convergence,
V2−V4 may receive more votes than V1, resulting in incorrect estimation if
only single image is used.

of vanishing point estimation is increased by online adaptation
of the parameters of both the data-driven as well as the model-
driven processing units. The noise variance of the Kalman-
Filter for a single measurement is determined using the
confidence measure of actual vanishing point estimation.
Wang et al. [31] performed vanishing point detection on hori-
zontally divided image strips. Then image feature measurement
together with road width likelihood are integrated for vanishing
point tracking. A similar strategy to our algorithm also has been
adopted by Rasmussen within the RoadCompass system [2],
[18]. They partitioned voting procedure into strips parallel to
the vanishing line and then tracked the points along vanishing
point contour from frame to frame. Our approach is much
efficient, which only needs peakedness and displacement infor-
mation for tracking.

III. METHODS

Our approach broadly consists of three significant compo-
nents: (1) computation of dominant texture orientation at every
image pixel with certain confidence level, (2) vanishing point
candidates selection through particle filtering, and (3) vanish
point voting. Below, we describe each stage in detail.

A. Texture Orientation Extraction

In this subsection, the dominant orientation estimation
method in [20] is first reviewed and then ours is presented.
The dominant orientation θ(p) at pixel p = (x, y) of an image
is the direction that describes the strongest local texture flow.
2-D Gabor filter banks are often used to get θ(p). First, four
Gabor energy responses are calculated as in [20] with φ ∈
{0◦, 45◦, 90◦, 135◦}. The Gabor filter with preferred orientation
φ and radial frequency ω0 = 2π/λ can be written as [32]

gφ,ω0
(x, y) =

ω0√
2πc

e−ω0
2(4a2+b2)/8c2

(
eiaω0 − e−c2/2

)
(1)

where a = x cosφ+ y sinφ, b = −x sinφ+ y cosφ, c = π/2
is a constant, and the spatial frequency λ is set to 4

√
2. The

Gabor energy responses at each pixel are obtained through the
convolution of a grayscale input image I with a bank of Gabor
filters with predefined orientations, i.e.,

Iφ,ω0
(p) = I(p)⊗ gφ,ω0

(p). (2)

According to the relationship between convolution and
Fourier transform, (2) becomes

Iφ,ω0
(p) = F−1 {F {I(p)} • F {gφ,ω0

(p)}} (3)

where F and F−1 denote Fourier and inverse Fourier trans-
forms, respectively. Normally, Iφ,ω0

has two components, a real
and an imaginary parts. Then, in order to provide an accurate
dominant orientation estimation, the Gabor energy response
Eφ,ω0

is calculated using the following equation:

Eφ,ω0
(p) =

√
Re (Iφ,ω0

(p))2 + Im (Iφ,ω0
(p))2. (4)

To measure Gabor energy responses’ peakedness near their
optimum angle, the four energy responses obtained from (4)
are first sorted based on their magnitudes in descending or-
der E1

φ,ω0
(p) > E2

φ,ω0
(p) > E3

φ,ω0
(p) > E4

φ,ω0
(p) and the no-

tation φi is assigned to denote the preferred orientation of the
Gabor filter for the computation of Ei

φ,ω0
(p). If the values

of E1
φ,ω0

(p) and E4
φ,ω0

(p) are significantly different, then the
orientation of p(x, y) is reliable, otherwise, there is not an
apparent dominant orientation associated with it, which often
appears in nonroad regions. We do not, like [20], compute the
orientations of all of the pixels in a road image, but reduce the
computational complexity by defining a confidence level:

Conf(p) =

⎧⎨⎩1 − E4
φ,ω0

(p)

E1
φ,ω0

(p)
, E1

φ,ω0
(p) > Eth

0, E1
φ,ω0

(p) ≤ Eth

(5)

where Eth is Gabor energy response threshold. We discard all
of the pixels having confidence scores lower than Tc, and the
remaining, also called reliable pixels, are kept as voters that
are used to detect the vanishing point. The thresholds Eth and
Tc are empirically determined through experiments on our test
images, and Eth = 0.1, Tc = 0.85 result in highest detection
accuracy. By comparison, our confidence level definition is
much simpler than the one described in [19] and [33] which
choose the average of the responses from E5

φ,ω0
(p) to E15

φ,ω0
(p)

as the mean of local maximum responses. Although using joint
activities of four Gabor filters to estimate texture dominant
orientations has been studied by Moghadam [20], the algorithm
still needs some improvements. In [20], the two most dominant
filter activation strengths E1

φ,ω0
(p) and E2

φ,ω0
(p) are used to

calculate the local texture orientation θ̂′(p) as follows:

V(p) =Vx(p) + jVy(p) =

2∑
i=1

Ei
φ,ω0

(p)ejφi(p) (6)

θ̂′(p) = tan−1

(
Vy(p)

Vx(p)

)
. (7)

Consider the case that the orientations of E1
φ,ω0

(p) and
E2

φ,ω0
(p) are 135◦ and 0◦. Fig. 3 depicts the dominant orien-

tation θ̂′(p) estimated by (6) and (7). In fact the real one is in
between 135◦ and 180◦, according to the symmetry of Gabor



SHI et al.: FAST AND ROBUST VANISHING POINT DETECTION FOR UNSTRUCTURED ROAD FOLLOWING 973

Fig. 3. Illustration of texture dominant orientation estimation using two dif-
ferent algorithms. E1

φ,ω0
(p) and E2

φ,ω0
(p) are the two most dominant Gabor

energy responses. The texture orientations computed by our algorithm and the
algorithm presented in [20] are denoted as θ̂(p) and θ̂′(p), respectively.

wavelets. Here, we propose to use the following equations for
dominant orientation estimation.

(a) If φ1 = 135◦ and φ2 = 0◦,{
Vx(p) = E1

φ,ω0
(p) cosφ1 − E2

φ,ω0
(p)

Vy(p) = E1
φ,ω0

(p) sinφ1.
(8)

(b) Otherwise{
Vx(p) = E1

φ,ω0
(p) cosφ1 + E2

φ,ω0
(p) cosφ2

Vy(p) = E1
φ,ω0

(p) sinφ1 + E2
φ,ω0

(p) sinφ2.
(9)

Then the dominant orientation θ̂(p) can be obtained by (7). To
speed up the process, a lookup table is used for (7). Meanwhile,
the computational amount is greatly reduced as many pixels
with low confidence scores have been discarded.

B. Vanishing Point Tracking

Once texture orientations are estimated, each reliable pixel
p(x, y) of an image with a texture orientation of θ̂(p) can
vote for any pixels above it, thus the voting stage is still time
consuming [28]. Apart from that, traditional voting schemes
(e.g., [19], [20]) are sensitive to strong edge interference as the
pixel which receives the largest number of votes is selected as
road vanishing point. In this subsection, we propose a novel
vanishing point tracking algorithm that is based on peakedness
measurement and particle filtering technique to reduce the
computational cost and improve the accuracy and stability of
vanishing point estimation.

1) Particle Filtering: Let the location of vanishing point be
a stochastic process. The state of vanishing point in terms of
discrete time k is denoted as xk and its history x0:k = {x0,x1,
. . . ,xk}. Similarly, the observation obtained through voting
(discussed in next subsection) is zk with history z1:k = {z1, z2,
. . . , zk}. Given the states x0:k and the observations z1:k up to
time k, vanishing point tracking can be interpreted as a poste-
rior density estimation p(x0:k|z1:k), where x0:k is hidden and
can only be estimated through the observations z1:k. Particle
filtering is an on-line posterior density estimation algorithm
that obtains an approximation to the posterior distribution at

time k − 1 by a set of weighted samples {x(i)
0:k−1, w

(i)
k−1}

N

i=1
,

also called particles, and recursively updates these particles
to approximate the posterior distribution at the next time step
p(x0:k|z1:k). A particle with large weight is likely to be drawn
multiple times and conversely a particle with very small weight
is almost not likely to be drawn. In vanishing point tracking,
particle weights will have great changes if stochastic obser-
vation noise is increased or decreased dramatically and sud-
denly, which is usually the case if only less than 60 vanishing
point candidates are used for voting, and the raw maximum
of vote function is noisy, leading to low tracking accuracy.
Although the observation noise could easily be handled in
the sensor model p(zk|x(i)

k ) by assuming a higher-variance on
measurement dynamics, vanishing point tracking accuracy and
stability will be reduced and the chances of misidentification
will be increased accordingly. An effective strategy to reduce
the influence of the stochastic observation noise is to take the
moving average of vanishing point observations based on the
fact that genuine vanishing points shift only slightly between
frames as vehicle moves. In this paper, the observation which
relates to the state vector xk at time k is modeled in the form:

zk =
1
n

k∑
j=k−l

zj = xk + rk. (10)

Here rk is moving average measurement noise vector. l repre-
sents the number of discrete time periods, it is inversely propor-
tional to the frame rate of road images as well as the running
speed of the ego vehicle. Since they are unknown for the test
video images, l = 20 is empirically determined through our
experiments. According to Bayes’ rule, the posterior density at
k can be approximated as [34], [35]

p(x0:k|z1:k) ≈
N∑
i=1

w
(i)
k δ

(
x0:k − x

(i)
0:k

)
(11)

where

w
(i)
k ∝ w

(i)
k−1

p
(
zk|x(i)

k

)
p
(
x
(i)
k |x(i)

0:k−1

)
q
(
x
(i)
k |x(i)

0:k−1, zk

) . (12)

Assume that the measurement noise p(rk|x(i)
k ) is a zero mean

Gaussian white noise with variance σr,k, we could model the
measurement density as:

p
(
zk|x(i)

k

)
= pr

(
zk − x

(i)
k |x(i)

k

)
= exp

(
− 1

2σ2
r,k

∣∣∣zk − x
(i)
k

∣∣∣2) . (13)

To deal with degeneracy, the samples {x(i)
k }i=1:N (N = 60)

are then resampled to generate an unweighted new particle
set {x̃(i)

k }i=1:N according to their importance weights. After
resampling, (12) reduces to:

w
(i)
k ∝ exp

(
− 1

2σ2
r,k

∣∣∣zk − x̃
(i)
k

∣∣∣2)w
(i)
k−1. (14)



974 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 4, APRIL 2016

Finally, an estimate of vanishing point location is given by:

x̂k =
1
N

N∑
i=1

x̃
(i)
k . (15)

The averaging effect of (15) further reduces the influence of
the stochastic observation noise introduced by vote function. In

the next time step k + 1, a new sample {x(i)
k+1}

N

i=1
is drawn

around x̂k according to the following nonlinear function:

x
(i)
k+1 = x̂k + qk (16)

Where qk ∼ N(0,σq,k), σq,k is process noise vector con-

trolling the distribution of a new sample. Note that, {x(i)
k+1}

N

i=1
are locations of the pixels to be voted.

2) Particle Distribution Regulation: Regulation of particle
distribution is a crucial step within the vanishing point tracking
process. In this paper, particles of the filter are tuned by measur-
ing the sharpness of the peak in VAS and the magnitude of van-
ishing point displacement between frames. If the peakedness of
VAS is low or the magnitude of vanishing point displacement
is large (e.g., tracking a curved road), then their search range
should be increased. Thereby, vanishing point can be tracked
timely or a wrong estimation can be recovered. In contrast,
high sharpness and small displacement indicate that estimated
vanishing point is reliable. Limiting search range appropriately
can reduce the computational complexity and the chances of
misidentification of vanishing point greatly. The distribution of
particles at time k + 1 is controlled by the process and mea-
surement noise variances σq,k and σr,k, which are determined
by the peakedness measure and the displacement of moving
average of vanishing point observations

σq,k = σr,k = max (min ((a|zk−1 − zk−2|

+ (1 − a)bn1 I2×1)σ0,σmax)) ,σmin) (17)

where b1, σ0, σmin, σmax are constants, they are empirically
set to 1.5, 44, 10, and 1000 accordingly. min(X) and max(X)
return the minimum and maximum elements in X, respectively.
The constant parameter a(= 0.91) balances the importance be-
tween the displacement and the peakedness of vanishing point
observations. n is the number of images with peakedness lower
than a given threshold TU (= 10−3) over consecutive frames.
The reason of using bn1 rather than a direct measurement of the
peakedness (e.g., 1/KL) is that it is noisy and the performance
of particle filtering would be affected. The peakedness served as
an indicator of the existence of a reliable vanishing point. One
way to assess the peakedness is to compute KL divergence,
which is a measure of the distance between two probability
distributions on a random variable. The KL divergence was
also used in [2], but it is just for failure detection, not the same
purpose described in this paper. Formally, given two probability
distributions g(x) and q(x) over a discrete random variable X ,
the KL divergence given by KL(g/q) is defined as follows:

KL

(
g

q

)
=

∑
x∈X

g(x)ln

(
g(x)

q(x)

)
. (18)

Here g(x) is taken from the vote function which is discussed
in next subsection, q(x) =

∑
(u,v)∈{X(i)

k−1}Ni=1
Votes(c(u, v))/N

is the average of the votes received by vanishing point candi-
dates. However, the information of vanishing point candidate
distribution is not incorporated in (18). Note that the surface of
our VAS is only spanned by 60 sparsely distributed vanishing
point candidates. Normally, the wider the distribution is, the
lower the peakedness would be. In order to incorporate dis-
tribution information into peakedness measure, the following
equation is proposed

U

(
g

q

)
=

1√
||σq,k−1||1

∑
x∈X

g(x)ln

(
g(x)

q(x)

)
(19)

where ||X||1 is the 1-norm of X. Finally, the measured van-
ishing point zk is considered reliable when U(g/q) is larger
than a given threshold TU determined through experiments.
The effect of the proposed noise-insensitive observation model
on improving vanishing point tracking quality can be further
understood from the equations (14), (16) and (17). Considering
the case that zk is replaced with zk, the particle weight w(i)

k ,
σq,k and σr,k will have great changes between frames. As a
result, the estimated vanishing point tends to lose or the chances
of misidentification will be increased, leading to low tracking
accuracy and stability.

C. Voting Scheme

With texture dominant orientations and the sample set
{x(i)

k+1}i=1:N
, a raw vanishing point is estimated by voting ac-

cording to the method presented in this subsection. Initially, the
samples are distributed uniformly in order to coarsely localize a
vanishing point. We round the value of each sample x(i)

k+1|i=1:N

to its nearest integer value. For each potential vanishing point
location, we only use reliable pixels below it to vote for it.
Note that the number of pixels to be voted is normally less
than the total number of the sample set {x(i)

k+1}i=1:N
since

there are several identical copies. The resampling algorithm
used in this paper are based on multinomial selection of the
particles from the original set with p(x̃

(i)
k = x

(i)
k ) = w

(i)
k . The

resampling operation biases the more heavily weighted parti-
cles, therefore some vanishing point candidates may well be
chosen repeatedly. In fact, the smaller the σq,k and σr,k are,
the greater the chances of repetition and the more efficient the
voting will be.

The vote function presented in [2] and [18] tends to fa-
vor points that are high in the image, leading those in the
upper part of an image receiving more votes than the lower
ones. In order to overcome this bias, the distance-based voting
scheme proposed by Moghadam [20] is utilized. This vote
function gives more votes to the candidates that are closer
to it along its ray. The Euclidean distance between the pixel
p(x, y) and the vanishing point candidate c(u, v) is d(p) =√
(x− u)2 + (y − v)2. Here, (u, v) is the location of a van-

ishing point candidate in the image. The Euclidean distance
d̂(p) is then normalized by the maximum possible distance
D(p) between the voter p(x, y) and the intersection point of the
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Fig. 4. Diagram of our voting scheme. Each reliable pixel of the image can
vote for any vanishing point candidates above it. The locations of the vanishing

point candidates are specified by the value of the sample set {x(i)
k+1}i=1:N

after a round operation, and their distribution is controlled by σq,k .

extension of the ray �rpc with the image boundaries (depending
on the angle γ), as Fig. 4 depicts

l(p) =

⎧⎪⎨⎪⎩
(w−y)
cos(γ) , 0◦ ≤ γ < 90◦

x, γ = 90◦

−y/ cos(γ), 90◦ < γ < 180◦
(20)

D(p) =

{
l(p), l(p) sin(γ) ≤ x

x
sin(γ) , l(p) sin(γ) > x

(21)

d̂(p) =
d(p)

D(p)
. (22)

Where γ is the angle the ray �rpc makes with horizontal line,
w denotes the width of the road image. If the angle (α) between
the texture dominant orientation θ̂p of the pixel p and its ray �rpc
is smaller than a given thresholdαT (= 15◦), then the vanishing
point candidate c(u, v) gains score given by

Vote (c(u, v)) = exp
(
−d̂(p)/2σ2

)
sin(θ̂p). (23)

The sin(θ̂p) could be viewed as a coefficient that penal-
izes the vanishing point candidates who tend to receive votes
from horizontal texture orientations. The distance function
exp(−d̂(p)/2σ2) is designed to give more votes to the van-
ishing point candidates that are closer to them. Finally, the
candidate which receives the largest votes is selected as a raw
vanishing point, and its location corresponds to the observa-
tion zk. Although the vanishing point candidates to be voted
are sparsely distributed, the proposed algorithm still has high
detection accuracy, which is attributed to the design of the
noise-insensitive observation model (10). It is worth noting that
tracking of a vanishing point is lost if there is no road or a
road is outside the camera field of view temporally. In this case,
vanishing point search range is automatically enlarged until it
is reacquired.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our vanishing
point tracking method quantitatively and qualitatively. The test

videos come from a variety of uncalibrated cameras mounted
with unknown height and tilt. For comparison purposes, the
three best known texture-based vanishing point detection meth-
ods, i.e., Rasmussen [18], Kong [19] and Moghadam [20], are
re-implemented using MATLAB. It is worth mentioning that
some of them (e.g., [19], [20]) are based on single image. In
addition, although the method in [18] is based on tracking, its
naive implementation, i.e., detecting vanishing point solely re-
lies on single image, is also investigated. This allows comparing
in depth the performance of different kinds of voting strategies.
Meanwhile, we did not tune any parameters as we are only
interested in investigating the adaptation of these algorithms
to different types of roads. In addition, we use (8) and (9) for
[20] in calculating the texture of the pixels with apparent domi-
nant orientations. Based on empirical observation, images with
61 × 81 resolution gave enough good results; hence all the im-
ages are first normalized to the same fixed size of 61 × 81 pixels
for computational consideration and then passed to the algo-
rithms. Finally, locations are projected back to the original
images for evaluation. All of the results are tested on a 1.8 GHz
Pentium Dual machine with 1 GB RAM. The estimated vanish-
ing points are compared with the ground-truth which are manu-
ally marked by 6 adults who have the experience of driving after
a brief description of the basic concept of road vanishing point.
The method is tested over 20000 frames. These videos include
desert, rural and snow-covered or well-painted road with large
variations in illumination, color, and texture. Among them,
more than 6000 frames contain strong-edge interference, such
as vegetation, barriers, mountains and surrounding buildings.
Each participant was told to select 80 representative challenging
frames from one of the six videos. Total 480 were selected.
There are 480 × 6 points in total marked by the participants.
A GUI program recorded their marked coordinates. A median
filter is applied to these coordinates (x and y respectively)
for each image and the median As there are an even number
of marked points, the median is the average of the middle
two annotations) are used as an initial ground-truth position
(G(gx, gy)). The number of manually marked points on either
side of gx is counted. Then a median filter is applied again to
the x coordinate of the marked points on the side with larger
amount (If their amount is equal, the more compact (i.e., lower
variance) side is used), and the median is used as qx. The same
process is applied for qy . A red circle centered at Q(qx, qy)
is overlaid on the road image. The radius of the circle R =
0.1L, where L is diagonal length of the road image. If there
were points outside the circle, then we removed them. 6.1% of
marked points were removed. The horizontal and vertical mean
(σx, σy) and maximum (σxmax, σymax) standard deviations
of the normalized distance errors of the remaining human
annotators are (0.012, 0.017) and (0.064, 0.080) respectively,
which indicates that most of them are fairly tight. For each
image, a median filter is applied to the rest coordinates again,
and the median is used as a ground-truth position.

A. Accuracy Comparison

Fig. 5 shows the basic steps of vanishing point localization on
a road image. Fig. 6 illustrates the evolution of vanishing point
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Fig. 5. Steps of vanishing point localization on a road image. (a) Original road
image. (b) Extracted dominant orientations ([0, π] radians mapped to [0, 255]
intensity values), the orientations of pixels with low confidence scores are set to
zero based on the knowledge discussed in Section III. (c) Voting accumulator
space. The intensity is proportional to the votes of vanishing point candidates
received. (d) Distribution of vanishing point candidates and estimated vanishing
point location, its vertical position marks the horizon line of road plane and its
horizontal position indicates the road direction. Note that the images in (b) and
(c) have been resized to the same size as (a).

Fig. 6. Evolution of vanishing point candidates on unstructured roads with
week (a), (b) or strong texture (c), (d), and paved roads with noticeable (e)
or sparser lane markers (f).

candidates on unstructured roads with week (a), (b) or strong
texture (c), (d), and paved roads with noticeable (e) or sparser
lane markers (f). It is clearly that the texture of Fig. 6(a) and
(b) becomes more noticeable from the left to the right, while
Fig. 6(f) is the opposite. Thus the points in the last column of
Fig. 6(a) and (b) are more compact. Comparing with Fig. 6(a)
and (b), the road images [Fig. 6(c) and (d)] whose texture
are stronger tend to have a sharper vote function. In addition,
if the displacement |zk−1 − zk−2| is large, the distribution of

Fig. 7. Examples of vanishing point estimation. Cyan boxes are ground truths
and red circles are estimated vanishing points. The pink triangles in the second
column are the detection results of [18] with vanishing point tracking algorithm
enabled. Odd rows: Locations of vanishing points; even rows: accumulator
spaces. (a)–(d) The locations of estimated vanishing points using our method,
and the methods in [18]–[20], respectively.

vanishing point candidates will be expanded, thus the actual
vanishing point would fall in this range (the second image of
Fig. 6(e)). As a result, it can track rapid changes or a wrongly
estimated vanishing point can be recovered quickly. As shown,
the number of vanishing point candidates to be voted changes
with their distribution. The more compact the candidates are,
the greater the chances of repetition will be. Fig. 7 illustrates
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Fig. 8. Normalized Euclidean distance error comparison of vanishing-point
detection methods in an 11-bins histogram.

TABLE I
ACCURACY COMPARISON

the detection results with estimated vanishing points overlaid on
the original images. It is clear that the algorithm works perfectly
well for both structured and ill-structured road conditions. For
better comparison and in-depth analysis, the estimation errors
are measured by comparing the results of the four algorithms
against the ground-truth using the normalized Euclidean dis-
tance [20]: NormDist = ||P (xp, yp)− P0(x0, y0)||/L, where
P (xp, yp) and P0(x0, y0) are the locations of estimated and
ground-truth vanishing points respectively. A value toward
0 means the increase of estimation precision. We evaluated
the results in an 11-bin statistical histogram. The normalized
Euclidean distance that is larger than 0.1 is placed into the last
bin of the histogram shown in Fig. 8. Table I shows the average
NormDist error of the algorithms. The number 0.0885 inside
the parentheses refers to the NormDist error of the vanishing
point detection results in [18] based on a single image. As
Fig. 8 indicates, our method has largest number of images in the
left part of the histogram and thus achieves highest detection ac-
curacy. In particular, the method [18] has 25 (with tracking) and
202 (without tracking) images with errors larger than 0.1. The
methods [19] and [20] show 37 and 86 images with large error,
whereas in our method, there are only less than 4 images. Be-
sides, the NormDist error that is less than 0.01 occurs in 173 and
147 images obtained using the methods [19] and [20], respec-
tively. But that number decreases to 39 images in [18] (without
tracking). Using vanishing point tracking technique, the per-
formance of [18] is greatly enhanced, with 158 images having
NormDist error less than 0.01, whereas there are 229 images in
our method. It is obvious that our method outperforms the
others significantly.

B. Efficiency Comparison

Table II lists the average elapsed time of the four algo-
rithms on an image. As indicated, the Rasmussen [18] (without
tracking) and Moghadam [20] methods are the slowest, with
about 7.14 sec and 7.39 sec respectively, The method [19] takes

TABLE II
EFFICIENCY COMPARISON

2.14 sec on average. By using vanishing point tracking tech-
nique,the running speed of [18]is improved,which takes1.73 sec
on average. However, our method only consumes 0.027 sec.
The reason why our method outperforms [18] is mainly two
aspects: 1) our texture orientation estimation algorithm is much
efficient; and 2) our method needs less extra cost than [18] for
tracking the vanishing points. We want to further point out that
Kong et al. [28] also have implemented their novel gLoG filter
based vanishing point detection algorithm in MATLAB. The
average time cost on a 240 × 180 image is 55 sec for their slow
gLoG method and 0.98 sec for their efficient gLoG method.
Rasmussen et al. [2] have implemented their algorithm in
Graphics hardware and it runs at roughly 30+ fps on a 60 × 80
image. The proposed texture orientation estimation and sparse
voting algorithms are parallelizable and can be further speed up
by parallel computing devices.

C. Failure Case Study and Future Work

There are a number of situations that can cause our algorithm
to fail. We have collected a large amount of videos from Internet
to list as many as possible the failure cases. Based on our
observation, these situations can be classified into three general
categories:

1) Poor Road Conditions: We found that the estimator
shows jumping vanishing points or even fails when the ve-
hicle runs on bumpy roads or goes up or down an abrupt
slope [Fig. 9(a)]. There are two reasons for the fails on these
situations. First, if the peakedness of VAS is high, the algorithm
may predict that the vanishing point resides in a small region in
the road image plane, while the actual one might not be inside
because of an abrupt change. However, once the peakedness
measure becomes low, the search range would be enlarged
exponentially, thereby, the actual vanishing point can be reac-
quired quickly. In fact, our method can have better results if
an ego-motion compensation is available. Second, in this paper,
we fix the value of l (= 20) to smooth the measurements for
all of the test images to reduce the stochastic observation noise
influence. This assumes that the vehicle is running at constant
speed and therefore there is a lag or advance in the tracking.
By dynamically adjusting l according to the velocity of the ego
vehicle, it is expected that our results can be further improved.

2) No-Road Images: The second type of failures occur
when the vehicle approached road dead-ends, T-intersection
[Fig. 9(b)], or left/right-angled turn [Fig. 9(c)], or the road
continuation is outside the camera field of view [Fig. 9(d)]
etc. An approach to sense when the estimator has failed is
to threshold the VAS peakedness and then switch to other
detection modules if available. In addition, the vanishing point
search space is restricted due to the fixed camera mounting. To
keep the road in a given look ahead distance within the visible
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Fig. 9. Illustrations of how the vanishing point fails under poor road conditions
(a), no-road situations (b)–(d), or when there are strong shadows or sun glare in
the road images (e), (f).

area, a simple method is using gaze control to direct the camera
toward the road vanishing point direction [36].

3) Shadows or Sun Glare: Other failure cases are the situ-
ations when shadows are cast nearly along the road [Fig. 9(e)]
or sun glare causes many road pixels on the camera to saturate
[Fig. 9(f)]. If the shadow edges are strong enough, and the road
vanishing point is close enough to the phantom vanishing point,
the tracker may be distracted. Fig. 9(e) shows how a vanishing
point “hop” from the actual to a phantom position. There are
many approaches can be used to mitigate this problem. For
example, such shadows can be explicitly detected and removed
using Yang’s algorithm [37] as a pre-processing step before the
dominant orientation computation. Another possible approach
for the former case is to predict the shadow region in the
image by calculating the sun altitude and azimuth as the method
presented in [2].

V. CONCLUSION

We have presented a novel algorithm that focuses on im-
proving vanishing point tracking accuracy and robustness. The
algorithm uses joint activities of four Gabor filters and confi-
dence measure to speed up dominant orientation computation.
After the dominant orientations have been estimated, a local
soft voting scheme is utilized to locate the vanishing point.
The vanishing point is traced from frame to frame in order
to reduce the computational complexity of voting and the
chances of misidentification due to a false peak elsewhere in
the image. The distribution of vanishing point candidates is
tuned based on the peakedness measure and the displacement of
moving average of vanishing point observations. The proposed
algorithm works for both structured and ill-structured road
conditions. The method has been implemented and tested over

20000 general road video frames including desert, rural, snow
covered and well painted roads with varieties of colors and
varying illuminations. Evaluation made on 480 frames demon-
strated that it outperforms some state-of-the-art texture-based
algorithms in terms of detection accuracy and speed. Despite of
this, there are still many situations that the algorithm may fail,
which necessitate modifications in the future work to make it
more reliable and effective. Firstly, improvement can be made
by incorporating car-road geometry and odometry information
into the particle filtering. Secondly, the failures in non-road
images could be prevented by using an active-pointed camera.
To harden the algorithm against strong shadows or sun glare,
possible solutions include shadow region prediction by sun
altitude and azimuth calculation and explicit shadow removal
before the dominant orientation computation. Finally, by going
to a higher resolution for vanishing point voting, additional
precision can be achieved.
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